17 research outputs found

    Eminence Grise Coalitions: On the Shaping of Public Opinion

    Full text link
    We consider a network of evolving opinions. It includes multiple individuals with first-order opinion dynamics defined in continuous time and evolving based on a general exogenously defined time-varying underlying graph. In such a network, for an arbitrary fixed initial time, a subset of individuals forms an eminence grise coalition, abbreviated as EGC, if the individuals in that subset are capable of leading the entire network to agreeing on any desired opinion, through a cooperative choice of their own initial opinions. In this endeavor, the coalition members are assumed to have access to full profile of the underlying graph of the network as well as the initial opinions of all other individuals. While the complete coalition of individuals always qualifies as an EGC, we establish the existence of a minimum size EGC for an arbitrary time-varying network; also, we develop a non-trivial set of upper and lower bounds on that size. As a result, we show that, even when the underlying graph does not guarantee convergence to a global or multiple consensus, a generally restricted coalition of agents can steer public opinion towards a desired global consensus without affecting any of the predefined graph interactions, provided they can cooperatively adjust their own initial opinions. Geometric insights into the structure of EGC's are given. The results are also extended to the discrete time case where the relation with Decomposition-Separation Theorem is also made explicit.Comment: 35 page

    An integral control formulation of Mean-field game based large scale coordination of loads in smart grids

    Full text link
    Pressure on ancillary reserves, i.e.frequency preserving, in power systems has significantly mounted due to the recent generalized increase of the fraction of (highly fluctuating) wind and solar energy sources in grid generation mixes. The energy storage associated with millions of individual customer electric thermal (heating-cooling) loads is considered as a tool for smoothing power demand/generation imbalances. The piecewise constant level tracking problem of their collective energy content is formulated as a linear quadratic mean field game problem with integral control in the cost coefficients. The introduction of integral control brings with it a robustness potential to mismodeling, but also the potential of cost coefficient unboundedness. A suitable Banach space is introduced to establish the existence of Nash equilibria for the corresponding infinite population game, and algorithms are proposed for reliably computing a class of desirable near Nash equilibria. Numerical simulations illustrate the flexibility and robustness of the approach

    A dynamic game model of collective choice in multi-agent systems

    Get PDF
    Inspired by successful biological collective decision mechanisms such as honey bees searching for a new colony or the collective navigation of fish schools, we consider a scenario where a large number of agents engaged in a dynamic game have to make a choice among a finite set of different potential target destinations. Each individual both influences and is influenced by the group's decision, as represented by the mean trajectory of all agents. Agents are assumed linear and coupled through a modified form of quadratic cost, whereby the terminal cost captures the discrete choice component of the problem. Following the mean field games methodology, we identify sufficient conditions under which allocations of destination choices over agents lead to self replication of the overall mean trajectory under the best response by the agents. Importantly, we establish that when the number of agents increases sufficiently, (i) the best response strategies to the self replicating mean trajectories qualify as epsilon-Nash equilibria of the population game; (ii) these epsilon-Nash strategies can be computed solely based on the knowledge of the joint probability distribution of the initial conditions, dynamics parameters and destination preferences, now viewed as random variables. Our results are illustrated through numerical simulations

    Nash Certainty Equivalence in Large Population Stochastic Dynamic Games: Connections with the Physics of Interacting Particle Systems

    No full text
    We consider large population dynamic games and illuminate methodological connections with the theory of interacting particle systems. Combined with the large population modelling, a Nash Certainty Equivalence (NCE) Methodology is introduced for specifying the localized strategy selection of a given agent within the Nash equilibrium setting. The NCE methodology closely parallels that found in the study of uncontrolled interacting particle systems within the framework of the McKean-Vlasov equation [19]: for both problems the solution is derived by focussing on a single generic individual at a microscopic level and analyzing its interaction with the ensemble of the other individuals of which it is itself, in a statistical sense, a representative

    Social Optima in Mean Field LQG Control: Centralized and Decentralized Strategies

    No full text
    corecore